
Partial exam fysische chemie 3 / advanced physical chemistry: statistical 
thermodynamics.  April 4, 2018. 

 
1. The frequencies of the normal modes of photons in a cubic box of edge-length L 
are given by 
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Here c is the speed of light and nx, ny, nz are positive integers (1, 2, 3, …). Photons 
only have transverse modes with two polarizations. 
 
a. [10] Show (using geometry to count the modes) that the resulting total number of 

normal modes of frequencies in between  and d  in a box with volume V=L3 is 

given by 
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b. [10] The energy levels of photons (electromagnetic oscillators) are given by 

n nh  , with n = 0, 1, 2, … The partition function of an oscillator being given by 
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c. [5] With ( )E d  the total radiant energy in the range   to d  , show that the 

spectral energy density is given by 
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d. [15] Show that the temperature of the box (the ‘black body’) to a good 

approximation is given by max / 3T h k with max the frequency where ( )E  has a 

maximum. Could this result in principle be used to estimate the temperature of the 
cosmic microwave background?  
 
2. a. [15] Show that the total intermolecular interaction energy in (simple) gases and 
liquids is given by 
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with φ(r) the potential energy of (assumed spherical symmetric) interaction between 
two atoms or molecules as a function of the distance r between their centers, and 
g(r) the radial distribution function. 
b. [15] Calculate Eint for a dilute system that interacts by a square well potential given 
by 
φ(r) = ∞  (r < σ1) 
 -ε   (σ1<r< σ2) 
  0   (r > σ2) 
Also, comment on the behavior of Eint as a function of temperature. 



3. A new type of particle is postulated with the following condition on the 
occupation of quantum mechanical states: for each state r with energy εr, the 
allowed values of the occupation numbers are nr =0, 1, or 2.  
 
a. [15] Show, starting from the probability that a given state r has occupation 
number nr  
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that the average occupation number of the postulated particles in a single-particle 
state with energy ε is given by 
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with 

  exp ( ) /x kT     

 
b. [15] Under what condition(s) reduces <nε> to Boltzmann statistics where the 
number of available states greatly exceeds the number of particles? Hint: translate 
that condition into expected value range of <nε>.   

 

Equations for statistical thermodynamics 

Taylor series:  exponent:  1xe x   x<<1 
  logarithm: ln(1 )x x   x<<1 

Geometrical series   
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Integration over angles θ and φ of a volume element in polar coordinates   
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Solutions. 
 
1a. See Widom p. 60+61. A unit volume in nx, ny, nz space refers to a single state. 
Thus, the total number of frequencies in between  and d  is the volume of a 

spherical shell in the positive octant of that space, that is, 21
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because of the two transverse polarizations. Take that into account, and QED. 
 
1b. See Widom p.67. Eq.(4.22) in Widom can be derived by starting with the 

definition of average energy being /
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was sought. 
 
1c. Total energy within the frequency interval is the total number of modes in that 
interval times the average energy per mode, and thus ( ) ( ) ( )E d G d      . 
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The relation max / 3T h k is indeed being used to estimate the temperature of the 

cosmic microwave background. There is a potential issue with the redshift due to the 
expansion of the universe, but that is a relatively small effect.  
 
2a.  see Widom p. 90 + 91 
2b. only the part with σ1<r<σ2 contributes to the integral so we have 
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Clearly E_int goes from negative values to zero upon increasing temperature in the 

situation of an ‘attractive’ square well, and from positive to zero for an repulsive 

‘well’ – actually a ‘shoulder’. The physical reason is that upon increasing temperature 

the probability that the systems resides in the well becomes smaller for attractive 

wells and higher for repulsive wells. Thus the fraction of time spent in the wells tend 

to become comparable to the fraction of time spent outside the well. 

 



3. a. Use that 
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b. In the Boltzmann limit where the number of states greatly exceeds the number of 

particles is should be that <nε> << 1 for all values of ε. In other words, on average 

most states are unoccupied in this limit. That translates into x << 1, or (ε – μ)/kT >>0. 

Since ε≥ it should be that μ << 0. [That will do for an answer – in fact, via 

3ln( )kT   , with   the thermal de Broglie wavelength, this condition in turn 

translates into the (hopefully familiar) condition 3 1  . ]  
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Problem 1 

(a)  What is the Gibbs dividing plane and how is it defined? [1 point] 

(b)  Explain how the surface coverage of certain species can be negative and give an 

example. [1 point] 

 

Problem 2 

The critical micelle concentration of a homologue series of sodium alkyl‐sulphates, 

H(CH2)nCOSO3
− Na+ at 40◦C is given in the table below as a function of chain length, n. 

n  8  10  12  14  16 

c.m.c., mmol/l  140  ???  8.6  2.1  0.5 

 

(a) Is micelle formation driven by hydrophilic heads or hydrophobic tails of these 
molecules? Explain why c.m.c. is smaller for larger n. [1 point] 

(b) The c.m.c. value for n=10 is missing. Using the given data, predict the missing value. [2 
points] 

 

Problem 3 

(a) Describe what happens when a drop of hexanol H(CH2)6OH (h) is applied to a clean 

water (w) / air (a) interface, given wh = 6.8 mN/m, ha = 24.8 mN/m, wa = 72.8 mN/m for 

a clean water surface and wa* = 28.5 mN/m for a saturated hexanol solution in water.  

[2 points] 

(b) Why the water/air interfacial tension strongly reduces (wa* << wa, see question (a) 
above) when a small amount of hexanol dissolves in water? [1 point] 

 

Problem 4 

 

                                                                                            

 

(a) Using the sketch above and Young’s law explain how a soap helps with cleaning dishes 
and other kitchenware. Using Young’s law and Gibbs adsorption equation explain why it 

is important to ensure adsorption of soap at the solid‐water interface? What can 

happen if this condition is not met? [2 points] 

 

   



Possibly useful formulas and constants 

Gibbs adsorption equation  (1)
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Young’s law  cosSG SL LG      

Adsorption energy of a spherical particle at an oil‐water interface  22
ad ow 1 cos

4
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Area of a circle with diameter D:  2
circle ( / 4)A D  

Surface area of a sphere with diameter D:  2
sphereA D  

Volume of a sphere  3
sphere ( / 6)V D  

Avogadro number Nav = 6 10
23 mol‐1.  

Boltzmann constant kB = 1.38 × 10
‐23 J/K.  

Ideal gas constant R = kB Nav = 8.31 J mol−1 K−1. 

 

 



Problem 1 

(a)  What is the Gibbs dividing plane and how is it defined? [1 point] 

 

 
The concentration of the molecules is varying smoothly through the interface from its bulk value in 

one phase to that in the other as illustrated in the sketch above. The Gibbs dividing plane is defined 

such that there is no excess molecules of at the surface. It means that the overestimation of the 

number of molecules in the phase  (shaded region on the left‐hand side of the Gibbs dividing plane) 
is exactly compensated the underestimation of the number of molecules in the phase  (shaded 
region on the right‐hand side). For solutions the position of the Gibbs dividing plane is defined using 

the profile of the solvent molecules.  

 

(b)  Explain how the surface coverage of certain species can be negative and give an 

example. [1 point] 
For solutions the Gibbs dividing plane is usually defined for solvent molecules. The (positive or 

negative) excess number of solute molecules is then introduced relative to the Gibbs dividing plane 

for solvent. This excess number can be negative when the solutes are depleted (e.g., ions) from the 

near‐surface region. 

 

Problem 2 

The critical micelle concentration of a homologue series of sodium alkyl‐sulphates, 

H(CH2)nCOSO3
− Na+ at 40◦C is given in the table below as a function of chain length, n. 

n  8  10  12  14  16 

c.m.c., mmol/l  140  ???  8.6  2.1  0.5 

 

(a) Is micelle formation driven by hydrophilic heads or hydrophobic tails of these 
molecules? Explain why c.m.c. is smaller for larger n. [1 point] 

 
The hydrophobic tails are responsible for micelle formation as they can win free energy by 
coming together and reducing the contact with water. The longer the tail, the stronger is the 
energy gain    and the smaller is the c.m.c. 

 
(b) The c.m.c. value for n=10 is missing. Using the given data, predict the missing value. [2 

points] 
 

Gibbs
dividing plane

phasephase

C1

C1

X

C1



The c.m.c. values exponentially depend on the change of the standard chemical potential    (see 

the formula provided). One can assume that  ( )n  linearly depends on the chain length n. The 

c.m.c. for n=10 can be estimated as follows. As described above, one can assume 

 (10) (8) (12) / 2       . Because of the exponential relation between  cmcx  and   , 

(10) (8) (12) 35cmc cmc cmcx x x   mmol/l. This estimated value is indeed very close to the 

experimental result  (10) 33cmcx   mmol/l [see Exercise 2a on page 27 of the lecture notes].  

 

Problem 3 

(a) Describe what happens when a drop of hexanol H(CH2)6OH (h) is applied to a clean 

water (w) / air (a) interface, given wh = 6.8 mN/m, ha = 24.8 mN/m, wa = 72.8 mN/m for 

a clean water surface and wa* = 28.5 mN/m for a saturated hexanol solution in water.  

[2 points] 

 

A droplet of hexanol will initially spread over the water surface since it is energetically 

favorable to replace the water/air interface (wa = 72.8 mN/m) with water/hexanol and 

hexanol/air interfaces (wh + ha = 6.8 + 24.8 = 31.6 < 72.8 mN/m). However, in equilibrium 

hexanol will partially dissolve in water. This will significantly reduce the water/air interfacial 

tension and the spreading coefficient will become negative: S = 28.5 – (24.8 + 6.8) = –3.1 

mN/m. The droplet will therefore stay on the water surface in a form of a thin “lens”.  

 

(b) Why the water/air interfacial tension strongly reduces (wa* << wa, see question (a) 
above) when a small amount of hexanol dissolves in water? [1 point] 

 

Hexanol molecules possess a relatively long hydrophobic tail, which leads to their low 

solubility in water. However, they can effectively adsorb at the air‐water interface by sticking 

out the tails into the gas phase and keeping the polar group in water. According to Gibbs 

adsorption equation, positive adsorption leads to lower surface tension.  

 

Problem 4 

 

                                                                                            

 

(a) Using the sketch above and Young’s law explain how a soap helps with cleaning dishes 
and other kitchenware. Using Young’s law and Gibbs adsorption equation explain why it 

is important to ensure adsorption of soap at the solid‐water interface? What can 

happen if this condition is not met? [2 points] 



Cleaning oil droplets from a solid surface will be much more efficient if the contact angle at 

the oil‐water‐solid contact line is increased towards 180. According to Young’s law, 
cos ( ) /SW SO WO     . An obvious effect is the adsorption of soap at the oil/water interface, 

which will reduce  WO . However, if this is not accompanied by a reduction of  SW  and making 

0SW SO   , a reduction of  WO  will shift  cos  towards a larger positive value. On the left sketch 

(no soap)   90  
 and, therefore,  0SW SO   ! For cos 1   the contact angle will reduce, 

which will lead to an even better spreading of oil over the solid surface. To fulfil the condition 

0SW SO   , one needs to reduce  SW . According to Gibbs adsorption equation, this can happen if 

soap strongly adsorbs at the sold‐water interface.  
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are allowed, no books, no notes of any kind. 

 

SUCCESS! 

Ben Erné 

 

GENERAL EXAMINATION RULES 
- You are not allowed to leave the exam room in the first 30 minutes. Latecomers are allowed in up 
to 30 minutes after the start time. 
- All electronic equipment needs to be switched off (including mobile phones), with the exception 
of electronic equipment allowed by the examiner. 
- Your coat and closed bag are placed on the ground. 
- Raise your hand when you need to go to the bathroom. 1 person at a time. Place your mobile 
phone visibly on your table just before you go. 
- Raise your hand if you have a question about the exam, or need extra paper, etc. 
- Not following the instructions of the examiner or supervisor can lead to exclusion from the exam.  
- When fraud is suspected the exam will be confiscated immediately. The examiner will act 
according to the Education and Exam Regulations and will inform the Exam Committee and the 
Education Manager in writing within one work day. 
- Upon receiving your result you can request the examiner for access to your graded exam. 
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Polyethylene glycol (PEG) is a polymer of ethylene glycol (EG; molar mass:              

62 g/mol; density: 1 g/cm3). Solutions of “PEG-4000” (4000 g/mol, 1 g/cm3) in 

water (18.0 g/mol, 1.00 g/cm3, 1.0 mPas) have an osmotic pressure given by the 

following equation: 
 

Π = 𝐴𝑐 + 𝐵𝑐2 
 

where Π is the osmotic pressure in Pa, A is a constant, B = 27.2 Pa per (g/L)2, and c 

is the concentration in g/L. Except if the question asks to find a (critical) 

temperature, assume a temperature of 300 K. 

 

1. [10]  Predict the value of A. 

 

2. [10]  Is water a good solvent for PEG?        (no points are given for just “yes” or “no”) 

 

3. [20]  From the given information, predict the minimum temperature above 

which  PEG-4000 should be fully miscible with water. 

 

4. [10]  Calculate the mixing enthalpy and the mixing entropy of a solution with 

4.00 g of PEG-4000 and 180 g of water. 

 

5. [10]  Without necessarily performing the calculations, explain how you 

expect that the answers will change if questions 1, 2, 3, and 4 are asked 

about the monomer (ethylene glycol) rather than about polymer? 

 

PEG-4000 can be chemically attached to nanoparticles of iron oxide (5.2 g/cm3) 

with a diameter of 10.0 nm, to promote their sterical stabilization. This can for 

instance be done by modifying the uncharged PEG molecules with a negatively 

charged phosphate end group, so that strong adsorption occurs to the positively 

charged bare surface of iron oxide in acidic solution. Including polymer layer, the 

hydrodynamic diameter is measured to be 30 nm. 
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6. [10]  The iron oxide nanoparticles have a magnetic dipole moment m equal 

to 1.01019 Am2. As a result, they are drawn toward a magnet by a 

magnetic force equal to mB’, where B’ is the magnetic field gradient. 

Calculate the speed at which the particles will move magneto-

phoretically in water toward a magnet, assuming a constant magnetic 

field gradient B’ of 1.0 tesla per meter (1.0 T/m, with T = JA1m2). 

 

7. [20]  At magnetophoresis-diffusion equilibrium, for each nanoparticle at 

each distance from the magnet, the magnetic force is balanced by the  

gradient in the approximately ideal chemical potential of the 

nanoparticles. Using the information in question 6, estimate across 

which distance the concentration of nanoparticles will change by a 

factor of e = 2.718… at magnetophoresis-diffusion equilibrium. You 

may first need to find an expression for the concentration profile, in a 

derivation similar to that for sedimentation-diffusion equilibrium. 

 

8. [10]  At high salt concentrations, the colloidal stability in acidic solution is 

very poor for bare iron oxide particles but excellent after chemical 

anchoring of PEG-4000 to their surface. Explain these observations. 
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R = 8.314 JK1mol1 g = 9.8 m/s2  kB  1.3810-23 JK1       1 atm = 101325 Pa 
 
 

µ = µ0+kBTln(c)   P=gh   F = mg  E = mgh  F = 6au 
 

 

 = (F/A) / (V/h)  D = kBT/(6a)  V = (4/3)a3  f = f0 exp[U/(kT) 



Fysische Chemie 3 (SK-BFYC3) / Advanced Physical Chemistry (SK-MPC3)  

Answers to the questions on the partial exam on Colloids & Polymers of April 13, 2018 

 

The value of B for PEG-4000 is from Plant Physiol. 91, 766 (1989), one of the publications provided as a 

“context paper” on BlackBoard. 

 

1. 𝐴 =
Π in Pa

𝑐 in g/L
=

𝑅𝑇

𝑀2
in Pa per g/L 

𝐴 =
(8.314 JK−1mol−1)(300 K)

(4000 g mol−1)

Nm

J

Pa

Nm−2

1000 L

m3
= 623.6 Pa per g/L 

 

2. The nonideal term in the equation for the osmotic pressure is positive: 

𝐵 =
𝑅𝑇

(𝜌2)2𝑣1
(

1

2
− 𝜒) > 0 

The sign is determined by the factor (
1

2
− 𝜒), as all other factors are positive. 

The osmotic pressure is higher than in the ideal case, corresponding to a good solvent. 

 

3. First, we must find the value of .  

From 
𝑅𝑇

(𝜌2)2𝑣1
(

1

2
− 𝜒) = 27.2 Pa per (

g

L
)

2
 it follows that  𝜒 =

1

2
−

[27.2 Pa per (
g

L
)

2
](𝜌2)2𝑣1

𝑅𝑇
. 

𝜒 =
1

2
−

[27.2 Pa per (
g
L)

2
] (1000

g
L)

2
[18.0 × 10−6 m3mol−1]

(8.314 JK−1mol−1)(300 K)
= 0.304 

 

The next step is to find the critical temperature above which no more demixing is expected. 

𝑇𝑐 = 𝑤 (𝜒𝑐𝑅)⁄  where 𝑤 = 𝜒𝑅𝑇 = (0.304)𝑅(300 K) and 𝜒𝑐 = (1 + √𝑟)
2

(2𝑟)⁄ =0.632, with  

𝑟 = (4000 gmol−1) (62 gmol−1) ≅ 64.5⁄ . On this basis, 

𝑇𝑐 = (0.304)(300 K) (0.632) = 144 K⁄ . 

In reality, aqueous solubility of PEG-4000 at 20 °C is not complete but 66 weight percent, 

indicating that the previous calculations underestimate the critical temperature. 

 

4. The enthalpy of mixing is: 

Δ𝐻 = (𝑛1 + 𝑟𝑛2)𝑅𝑇𝜒𝜙1𝜙2 

with 𝜙2 =
𝑟𝑛2

𝑛1+𝑟𝑛2
=

(64.5)(0.00100 mol)

(10.0 mol)+(64.5)(0.00100 mol)
= 0.0064 

(since 4.00 g of PEG-4000 is 0.00100 mol and 180 g of water is 10.0 mol). 
 

= [(10.0 mol) + (64.5)(0.00100 mol)](8.314 JK−1mol−1)(300 K)(0.304)(0.9936)(0.0064) 

= 48.5 J 

 

The entropy of mixing is: 

−𝑅[𝑛1ln𝜙1 + 𝑛2ln𝜙2] 

= −(8.314 JK−1mol−1)[(10.0 mol)ln(0.9936) + (0.00100 mol)ln(0.0064)] = 0.58 JK−1 



5. The value of A would be higher by a factor of r = 64.5, so 40.2 kPa per g/L. 

 

Water will also be a good solvent for EG, since the critical temperature would be even lower 

(𝑇𝑐 = 2𝑤 (𝑅)⁄  for a regular solution (r = 1), so it would be lower by a factor 2/0.632 (46 K). 

 

The mixing enthalpy would remain unchanged, as , the volume fractions, and the number of 

moles of solvent and of polymer segments (now all separate from each other) remain the same. 

 

The mixing entropy would go up (to 3.24 JK1), since 4.00 g of EG is 64.5 times as many moles as 

4.00 g of PEG-4000. 

 

6. This is a variation on the theme of calculating the sedimentation rate (which can in this case be 

calculated to be about 81011 ms1). The magnetic force on the particles should be put equal to 

the viscous force and one can solve for the speed of the magnetophoresis: 

𝑢 =
𝑚𝐵′

6𝜋𝜂𝑎𝐻
=

(1.0 × 10−19 Am2) (1.0 
T
m

JA−1m−2

T )

6𝜋(0.00100 Pa ∙ s)(15.0 × 10−9 m)
= 3.5 × 10−10 m/s 

 

7. Putting the words into mathematical expressions gives: 

−𝑚𝐵′ =
d𝜇

d𝑥
= 𝑘𝐵𝑇

dln(𝑐)

d𝑥
 

where ideality of the chemical potential of nanoparticles was assumed via:  

𝜇 = 𝜇0 + 𝑘𝐵𝑇ln(𝑐) 

 

Integrating  from x0 to x, with c(x0)=c0 and c(x)=c, we get: 

𝑐 = 𝑐0exp [−
𝑚𝐵′(𝑥 − 𝑥0)

𝑘𝐵𝑇
] 

This implies that the characteristic distance (where the exponent is 1) is equal to: 

𝑘𝐵𝑇

𝑚𝐵′
=

(1.38 × 10−23 J/K)(300 K)

(1.0 × 10−19 Am2) (1.0 
T
m

JA−1m−2

T )
= 0.04 m 

 

8. The answer might use a schematic illustration of a total interaction potential (potential energy 

versus distance between outer surfaces of the iron oxide crystals). The main point is that the 

attractions (Van der Waals and magnetic) start to operate at a certain distance that is shorter 

than the distance at which sterical repulsion from attached PPEG is already effective and that is 

longer than the distance at which repulsion due to surface charges starts to act. As a result, the 

total pair potential in the presence of a sterical stabilization layer is repulsive at each distance 

between iron oxide crystals, whereas for the bare crystals, the attraction is already winning at 

the short distances where repulsion due to surface charge starts to become significant. 
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