
Sketch of suggested solutions

Please email errors and/or suggestions to c.kreisbeck@uu.nl.

Problem 1.

a) The characteristic polynomial is det(A− λI) = λ2 + 1. The eigenvalues are the roots of the
characteristic polynomial, hence λ1/2 = ±i.

If v =

(
v1
v2

)
is an eigenvector associated with λ1, it satisfies Av = λ1v or equivalently solves

the system of linear equations

(2− i)v1 + v2 = 0

−5v1 − (2 + i)v2 = 0.

Hence,

v = c1

(
−1

2− i

)
for some c1 ∈ C.

Similarly, one obtains that c2

(
−1

2 + i

)
with c2 ∈ C are the eigenvectors corresponding to λ2.

b) The matrix A is diagonalizable since the matrix

S =

(
−1 −1

2− i 2 + i

)
,

whose columns consist of eigenvectors associated with λ1 and λ2, is invertible. Indeed, detS =

−2i 6= 0. One can show that then A = SDS−1 with D =

(
i 0
0 −i

)
.

c) The general solution to the homogeneous equation d
dt
F−AF = 0 (or equivalently d

dt
F = AF )

is given by

F (t) = c1e
it

(
−1

2− i

)
+ c2e

−it
(
−1

2 + i

)
for t ∈ R with c1, c2 ∈ C.

We observe that the constant function V0(t) =

(
1
0

)
for t ∈ R is a particular solution to

the inhomogeneous equation. The general solution is then given as the sum of this particular
solution and the general solution to the homogeneous equation, i.e. V = F + V0.

Problem 2.

a) By differentiating every term individually one finds that

f ′(x) =
∞∑
n=1

nanx
n−1 =

∞∑
n=0

(n+ 1)an+1x
n,

f ′′(x) =
∞∑
n=2

n(n− 1)anx
n−2 =

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n
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for x ∈ R. Hence,

0 = f ′′(x)− αf ′(x) =
∞∑
n=0

[
(n+ 2)(n+ 1)an+2 − α(n+ 1)an+1

]
xn,

and we infer from the identity principle that

(n+ 2)(n+ 1)an+2 − α(n+ 1)an+1 = 0 or

(n+ 2)an+2 − αan+1 = 0 (5)

for all integers n ≥ 0, which is the sought recurrence relation.

b) After an index shift we get from (5) that

an+1 =
α

n+ 1
an

for n ∈ N. Note that (5) does not impose any restriction on a0 ∈ R. Iterating the previous
formula gives for integers n ≥ 0,

an+1 =
αn

(n+ 1)!
a1.

Then,

f(x) = a0 +
∞∑
n=0

αn

(n+ 1)!
a1x

n+1 = a0 +
∞∑
n=1

a1α
n−1

n!
xn, x ∈ R.

The choice of a0 and a1 follows from the initial conditions. Indeed, 0 = f(0) = a0, and 1 =
f ′(0) = a1. All in all, we have that

f(x) =
∞∑
n=1

αn−1

n!
xn, x ∈ R. (6)

c) We will show that the series
∑

n≥1 bn,x with bn,x = αn−1

n!
xn converges for any x ∈ R. Since

lim
n→∞

|bn+1,x|
|bn,x|

= lim
n→∞

|αnxn+1n!|
|(n+ 1)!xnαn−1|

= lim
n→∞

|αx|
(n+ 1)

= 0,

the asserted convergence follows from the quotient test.

d) We observe that

∞∑
n=1

αn−1

n!
xn =

1

α

∞∑
n=1

1

n!
(αx)n =

1

α

( ∞∑
n=0

1

n!
(αx)n − 1

)
,

which shows that (6) is the Taylor expansion of the function x 7→ 1
α

(eαx − 1).

Problem 3.

a) The visualization of f is left to the reader. We observe that f is piecewise continuously
differentiable with jumps in the derivatives for all odd integers, i.e. x = 2k + 1 with k ∈ Z.

b) For k = 0 we have that

f̂0 =
1

2

∫ 1

−1
f(x) dx =

∫ 1

0

1− x2 dx =
2

3
.
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We use the observation that f̂k = f̂−k for k ∈ Z due to the fact that f is even along with the
hint to obtain that

f̂k =
1

2
(f̂k + f̂−k) =

1

4

∫ 1

−1
(1− x2)(e−ikπx + eikπx) dx =

1

2

∫ 1

−1
(1− x2) cos(kπx) dx

= −
∫ 1

0

x2 cos(kπx) dx =
−2(−1)k

π2k2
.

c) Since f is 2-periodic, piecewise continuously differentiable and continuous, we infer from the
Fourier inversion formula that for x ∈ R,

f(x) =
1

2
(f(x−) + f(x+)) =

∞∑
k=−∞

f̂ke
−ikπx,

where the series on the right-hand side converges. Since f is even, the Euler formula implies
that

f(x) = f̂0 + 2
∞∑
k=1

f̂k cos(kπx),

which is the desired representation if we set a0 = f̂0 and ak = 2f̂k for k ∈ N with the Fourier
coefficients determined in b). Thus,

f(x) =
2

3
− 4

∞∑
k=1

(−1)k

π2k2
cos(kπx). (7)

d) For the first series we set x = 0 in (7) to find that

1 = f(0) =
2

3
− 4

π2

∞∑
k=1

(−1)k

k2
.

This can be rewritten as

∞∑
k=1

(−1)k

k2
= −π

2

12
.

The Parseval formula tells us that ‖f‖2 =
∑∞

k=−∞ |f̂k|2, where ‖ · ‖ is the norm induced by the
standard inner product on C0

2-per((−1, 1);C). Since

‖f‖2 =
1

2

∫ 1

−1
(1− x2)2 dx =

8

15

and

∞∑
k=−∞

|f̂k|2 = |f̂0|2 + 2
∞∑
k=1

|f̂k|2 =
4

9
+ 2

∞∑
k=1

4

π4k4
=

4

9
+

8

π4

∞∑
k=1

1

k4
,

it follows that

∞∑
k=1

1

k4
=
π4

90
.
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Problem 4.

a) Observe that with F denoting the Fourier transformation with respect to the x-variable, we
obtain for every t > 0 that

F
(
∂2

∂x2
u(·, t)

)
(s) = (is)2û(s, t) = −s2û(s, t), s ∈ R,

and

F
(
∂2

∂t2
u(·, t)

)
(s) =

∫ ∞
−∞

∂2

∂t2
u(x, t)e−isx dx =

∂2

∂t2

∫ ∞
−∞

u(x, t)e−isx dx =
∂2

∂t2
û(s, t), s ∈ R.

Hence, applying F to (4) results in

∂2

∂t2
û(s, ·) = −s2û(s, ·)

for every s ∈ R, or in other words, û(s, ·) solves the second order linear ordinary differential
equation v′′ + s2v = 0 in (0,∞).

b) If s 6= 0 the general (complex) solution to (4) is

v(t) = c1e
ist + c2e

−ist

with constants c1, c2 ∈ C. We choose the constants such that the initial conditions are satisfied.
It follows from

ĝ(s) = v(0) = c1 + c2 and 0 = v′(0) = is(c1 − c2)

that c1 = c2 = 1
2
ĝ(s). Hence, v(t) = 1

2
ĝ(s)(eist + e−ist) = ĝ(s) cos(st) for t ≥ 0.

For s = 0 we know that every solution to (4) is of the form v(t) = c1t + c2 with c1, c2 ∈ C.
Accounting for the initial conditions

ĝ(0) = v(0) = c2 and 0 = v′(0) = c1

implies that v is the constant function with value ĝ(0).

This shows that for all s ∈ R the sought solution is v(t) = ĝ(s) cos(st) for t ≥ 0.

c) For s ∈ R, it holds that

(Fgr)(s) =

∫ ∞
−∞

g(r + x)e−isx dx =

∫ ∞
−∞

g(y)e−is(y−r) dy = eisr
∫ ∞
−∞

g(y)e−isy dy = eisrĝ(s),

where we have used the change of variables y = r + x.

d) In view of b) we have

û(s, t) = ĝ(s) cos(st) = 1
2
ĝ(s)(eist + e−ist)

for s ∈ R and t ≥ 0. By Fourier inversion one obtains for every t ≥ 0 that

u(x, t) = F−1(û(·, t))(x) = 1
2
F−1(ĝ(s)eist)(x) + 1

2
F−1(ĝ(s)e−ist)(x)

= 1
2
F−1(F(gt))(x) + 1

2
F−1(Fg−t)(x) = 1

2
gt + 1

2
g−t = 1

2
g(x+ t) + 1

2
g(x− t), x ∈ R.

In the third equality, we have used the result from c). It is left to the reader to double-check
that u is actually a solution to (2) and (3).
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Problem 5.

a) Let f, f̃ ∈ C0([0, 1]) and α ∈ R. Then for all x ∈ R,

Lg(f + f̃)(x) = (
∫ 1

0
f(y) + f̃(y) dy)g(x) = (

∫ 1

0
f(y) dy)g(x) + (

∫ 1

0
f̃(y) dy)g(x)

= Lg(f)(x) + Lg(f̃)(x)

and

Lg(αf)(x) = (
∫ 1

0
αf(y) dy)g(x) = α(

∫ 1

0
f(y) dy)g(x) = αLg(f)(x).

This shows that Lg(f + f̃) = Lg(f) + Lg(f̃) and Lg(αf) = αLg(f). Hence, the operator Lg is
linear.

b) Recall that λ is an eigenvalue for Lg if there exists a non-zero function f ∈ C0([0, 1]) such
that

Lg(f) = λf.

We will now show that λg :=
∫ 1

0
g(y) dy 6= 0 is an eigenvalue of Lg. Indeed, for f = g we find

that

Lg(g) =
(∫ 1

0

g(y) dy
)
g = λgg.

Since g is not the zero function due to the assumption ‖g‖ = 1, this proves the assertion.

The corresponding eigenspace is

Eλg = {f ∈ C0([0, 1]) : Lg(f) = λgf} = {f ∈ C0([0, 1]) : f = αg for some α ∈ R} = span{g}.

Indeed, since g is an eigenfunction of Lg for the eigenvalue λg, it is clear that span{g} has to
be contained in Eλg . On the other hand, to see that Eλg cannot be larger, we observe that the

condition Lgf = λgf for any f ∈ C0([0, 1]) implies that f = (
∫ 1

0
f(y) dy)λ−1g g. Hence, f has to

be a multiple of g.

c) In view of the condition ‖g‖ = 1, we calculate that

〈Lg(f), g〉 =

∫ 1

0

(Lg(f))(x)g(x) dx =

∫ 1

0

(
∫ 1

0
f(y) dy)g(x)g(x) dx

= (
∫ 1

0
f(y) dy)

∫ 1

0

g(x)g(x) dx = (
∫ 1

0
f(y) dy)〈g, g〉 = (

∫ 1

0
f(y) dy)‖g‖2 =

∫ 1

0

f(y) dy.

This means that Lg(f) and g are orthogonal if and only if f has vanishing mean value,

i.e.
∫ 1

0
f(y) dy = 0.

d) Since
∫ 1

0
f(y) dy ∈ R, we observe that Lg(f) is a real multiple of g and hence an element

of span{g}. Therefore, we find that the orthogonal projection of Lg(f) onto span{g} is again
Lg(f) and the distance is zero.
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