Sketch of suggested solutions

Please email errors and/or suggestions to c.kreisbeck@uu.nl.

Problem 1.

a) The characteristic polynomial is det(A — AI) = A? + 1. The eigenvalues are the roots of the
characteristic polynomial, hence A/, = &i.

Ifv= vl is an eigenvector associated with A;, it satisfies Av = A\jv or equivalently solves
2

the system of linear equations
(2—i)1)1+'l)2 =0
—5U1 - (2 + i)vg = 0.

Hence,

for some ¢; € C.

Similarly, one obtains that ¢, (2__1_ z) with ¢y € C are the eigenvectors corresponding to As.

b) The matrix A is diagonalizable since the matrix

-1 -1
5= <2—z’ 2+z’>’

whose columns consist of eigenvectors associated with A; and Ag, is invertible. Indeed, det S =

—2i # 0. One can show that then A = SDS™! with D = (6 _02>

c¢) The general solution to the homogeneous equation %F —AF = 0 (or equivalently %F = AF)
is given by

F(t) = ¢re® (2_—1i) + coe (2:_12> for t € R with ¢, ¢, € C.

We observe that the constant function Vy(t) = for t € R is a particular solution to

(1
0
the inhomogeneous equation. The general solution is then given as the sum of this particular
solution and the general solution to the homogeneous equation, i.e. V = F 4 V}.

Problem 2.
a) By differentiating every term individually one finds that

f(x) = Znanx”_l = Z(n + Dap12",
n=1 n=0

f(x) = Z n(n — 1a,a" 2 = Z(n +2)(n + 1Day 2"
n=2 n=0



for x € R. Hence,

0=[f"x)—af'(x)= Z[(n +2)(n + Danse — a(n + 1)ani 2",

n=0
and we infer from the identity principle that
(n+2)(n+ Dapo —a(n+1)a,y =0 or
(n+ 2)api2 — @ty =0 (5)
for all integers m > 0, which is the sought recurrence relation.

b) After an index shift we get from (5) that

«
a
n—+1

Ap4+1 = n

for n € N. Note that (5) does not impose any restriction on ay € R. Iterating the previous
formula gives for integers n > 0,

an
n+1)!

Api+1 = ( aj.

Then,

o0 n o0 n_l
. (8% n+1 a1 n
fz) =ap+ ng_o —(n n 1>!a1x =ag+ ngl p x", z € R.

The choice of ap and a; follows from the initial conditions. Indeed, 0 = f(0) = ap, and 1 =

f'(0) = a;. All in all, we have that

e n—1
a n
f(a:):z; 2", wER. (6)
¢) We will show that the series 2@1 by With b, , = O‘Z!_lx" converges for any x € R. Since
o el _ el aa]
n—o00 |bn,:c| " noo |(’n, + 1)!1’”0{”7” oo (n —+ 1) -

the asserted convergence follows from the quotient test.
d) We observe that

! | I Ry | .
> = g 2 e = 2 (3 e —1).

n=1 n=0

which shows that (6) is the Taylor expansion of the function z — (e*” — 1).

Problem 3.

a) The visualization of f is left to the reader. We observe that f is piecewise continuously
differentiable with jumps in the derivatives for all odd integers, i.e. x = 2k + 1 with k € Z.

b) For k = 0 we have that
R 1 1 1 2
foz—/ f(x)dx:/ 1—2%de = =.
2 /), 0 3



We use the observation that f, = f_x for k € Z due to the fact that f is even along with the
hint to obtain that

f (fk + f k) = i /_1 (1- xz)(e*im + eik”) dr = 1/_l (1 — 2%) cos(kmx) dx

1 24

l\DI»—

! —2(—1)*
— = 2 krx)dr = ———
/0 x* cos(kmz) dx o5

¢) Since f is 2-periodic, piecewise continuously differentiable and continuous, we infer from the
Fourier inversion formula that for z € R,

fa) = UG+ fa) = 3 fuet,

k=—o00

where the series on the right-hand side converges. Since f is even, the Euler formula implies
that

flz) = fo+2 Z i cos(kmz),
k=1

which is the desired representation if we set ag = fo and a = 2 fk for k € N with the Fourier
coefficients determined in b). Thus,

2 oo
=3- 4 7r2k2 cos(kmx). (7)
k=1
d) For the first series we set = 0 in (7) to find that
2 4«
1 g = - — —
3 n? ; k2

This can be rewritten as

The Parseval formula tells us that || £]|> = 20> | fx|?, where || - || is the norm induced by the
standard inner product on C§__ ((—1,1);C). Since

per

1/t 8

2 _ — 1 — 12)2 _°

172 =5 [ (a-aPde=

and
4 81
> lif - \fo!2+22\fk!2——+ Z e R DM
k=00 k=1

it follows that



Problem 4.

a) Observe that with F denoting the Fourier transformation with respect to the z-variable, we
obtain for every ¢ > 0 that

f(aajzu( t))(s) = (is)*0(s,t) = —s*u(s, 1), s € R,

and
o o [ 0?
f(at / e u(z,t)e™"" dr =50 / u(z,t)e " dr = @u(s t), s € R.

Hence, applying F to (4) results in

0? . .
ﬁu(s, ) = —s%u(s, )

for every s € R, or in other words, (s, -) solves the second order linear ordinary differential
equation v” 4+ s?v = 0 in (0, 00).

b) If s # 0 the general (complex) solution to (4) is
U(t) _ Cleist + CQG_iSt

with constants ¢, co € C. We choose the constants such that the initial conditions are satisfied.
It follows from

G(s) =v(0) =1 + o and  0=1'(0) =is(c; — ¢2)

that ¢; = ¢ = 19(s). Hence, v(t) = $G(s)(e"" 4 e7*") = G(s) cos(st) for t > 0.

For s = 0 we know that every solution to (4) is of the form v(t) = ¢it + ¢o with ¢p, ¢ € C.
Accounting for the initial conditions

§(0) =v(0) = ¢y and 0=12(0)=¢

implies that v is the constant function with value §(0).
This shows that for all s € R the sought solution is v(t) = g(s) cos(st) for t > 0.
c¢) For s € R, it holds that

o)

Foo) = [ atr+mean [

—00

o0

g@WWﬂ@=W/sMWW@=wwa

o0 oo

where we have used the change of variables y = r + .

d) In view of b) we have

(s, t) = g(s) cos(st) = 1g(s) (" + ™)

for s € R and t > 0. By Fourier inversion one obtains for every ¢t > 0 that

u(z, t) = FHa(-, 1) (x) = 2 F 7 (g(s)e™) (@) + 2 F " (g(s)e ") (2)
=1F Y (Flg))(@) + 3F (Fo-)(@) =3+ L9 =39+ t) + gz —t), =z €R

In the third equality, we have used the result from c). It is left to the reader to double-check
that u is actually a solution to (2) and (3).



Problem 5.
a) Let f, f € C°([0,1]) and « € R. Then for all z € R,
Ly(f + P)@) = (Jy F@) + F) dy)g(@) = (fy F) dy)g(z) + (f, [(y) dy)g(z)

(
= Ly(f)(2) +Lg(f)(ﬂf)

and

Ly(af)(z) = (J; af(y) dy)g(z) = a(f, f(y)dy)g(x) = aL,(f)(z).

This shows that Ly(f + f) = Ly(f) + Ly(f) and L,(af) = aL,(f). Hence, the operator L, is

linear.

b) Recall that \ is an eigenvalue for L, if there exists a non-zero function f € C°([0,1]) such
that

Lg(f) =\

We will now show that A, fo y)dy # 0 is an eigenvalue of L,. Indeed, for f = g we find
that

Ly(g) = (/01 9(y) dy)g = Agg-

Since ¢ is not the zero function due to the assumption ||g|| = 1, this proves the assertion.

The corresponding eigenspace is

Ey, ={f € C°([0,1]) : Ly(f)=Xf}={f € C°([0,1]) : f = ag for some a € R} = span{g}.

Indeed, since g is an eigenfunction of L, for the eigenvalue ), it is clear that span{g} has to
be contained in E),. On the other hand, to see that E), cannot be larger, we observe that the

condition L,f = A\, f for any f € C°([0,1]) implies that f = fo y) dy) )\ g. Hence, f has to
be a multiple of g.

¢) In view of the condition ||g|| = 1, we calculate that

(Ly(f),g) = / (Lo())(@)g(x) dz = / U2 F) dy)g(a)g(x) de
— ([ Fy) dy) / g(@)g(@)dz = ([ 1) dy)g.9) = (1 F() dy)llgl? = / iy

This means that L,(f) and g are orthogonal if and only if f has vanishing mean value,
ie. fol dy = 0.
d) Since fo y)dy € R, we observe that L,(f) is a real multiple of g and hence an element

of span{g}. Therefore we find that the orthogonal projection of L,(f) onto span{g} is again
L,(f) and the distance is zero.





