
Colloid Science Exam Part II  June 30, 2021      Maximum total points: 120 

1. During the initial stage of fast flocculation, the number density c of monomeric 

colloids decreases with time t as 

2

11 11/    ;   rate constant of monodisperse colloids dc dt k c k= − =  

a) Explain why the initial flocculation kinetics is of second order in 

concentration.[4] 

b) If we decrease the size of the colloids, how does that modify the flocculation 

kinetics? [7] 

c) Defend or criticize the following statement: “the above given differential 

equation strictly speaking only holds for colloids that are spherical”. [7] 

d) Colloidal spheres with radius 
1 500 nmR = and volume fraction 

1 0.01 =  are 

mixed in a dispersion with small nano-particles with radius 
2 10 nmR = and 

volume fraction 
2 0.05 = . Calculate the Brownian encounter frequency 

between small spheres and big spheres. [13] 

e) Write down Fick’s first diffusion law for the total diffusion flux ( )J j i→  of j-

particles, through a shell area 
24 r , in the direction of particle i at the origin 

(see BM Figure 9.2). Show how integration of this law leads to the stationary 

diffusion flux  
,( ) 4 .ij ij jJ j i D R c → =  Specify boundary conditions – and 

meaning of symbols. [14] 

f) BM Equation (9.34) is the time dependence
1

 of the (number) concentration 

c of flocs containing  monomers (singlet colloids). Show how (9.33) 

leads to equation (9.36) for the total number density, totc  of monomers 

and flocs. Demonstrate that the half-life of that total number is 

1/2 11 02 /t k c= . [15] 

 
1 Assuming all rate constants 

11 equal ijk k  



g)  t  

BM Figure 9.2. Spheres j diffuse from a bulk (with number concentration cj,) at a distance Ri +  towards 

a diffusing tracer sphere with radius Ri which acts as an infinite sink from which no j-sphere can escape.

 

 

BM Figure 8.2. Axial flow in a straight tube; the velocity profile is given by BM eq. (8.15); the radial co-

ordinate runs from 0r =  in the center to the tube radius r R= . The flow is driven by a pressure 

gradient / /dp dz P L=  , where P is the total pressure drop over a tube length L . 

  



2. The flow of blood through veins of a human being is an example of the flow of 

a viscous colloidal dispersion in a tube. Assume an axial flow in a straight tube 

with radius R and length L (BM Figure 8.2) in the z direction as a model for the 

vein. The dispersion’s Newtonian viscosity
2

 equals  1 mPa sec. =   

a) Calculate the average blood speed <u> in a tube with radius 1 mR =  and a 

blood pressure gradient of 
10.3 bar m−
.[8] 

b) Evaluate the Reynolds number for the flow in a), for a blood mass density 

11 g mL −= . Conclusion? [8] 

c) Show how the viscous stress zr  depends on radial position r in the vein, 

and sketch the stress profile;  assuming no-slip boundary conditions, i.e. u(𝑟 = 

R) = 0. [12] 

d) Derive the total viscous force vis, ,F  on the inner wall of the tube. Explain why 

your result for
visF must be correct. [14] 

e) Calculate the magnitude of the liquid permeability k  (defined by Darcy’s law 

/u k P L =  ) of the tube with radius 1μmR = .[9] 

f) What is a pure-slip boundary condition, and what can you say about  flow in 

a tube when a pure-slip condition would be present ? Do you expect the 

geometry of the flow channel still to be relevant under pure-slip conditions? [9] 

  

 
2 Blood is actually a non-Newtonian fluid, but its shear-thinning viscosity is close to that of water. 



Answers CS Exam Part II  June 30, 2021. 

 

1 a) Kinetics is proportional to concentration squared as initially there only encounters 

between two monomers ; in a later stage also aggregation of dimers, trimers etc 

occurs. 

b) It depends: if the colloid size decreases for a given number density, the kinetics 

will hardly change because sizek D   and 1/ sizeD   so k is size independent. 

However, if we fix the colloid volume fraction (or weight concentration), than a size 

decrease enhances the colloid number density so the kinetics will speed up. 

c) Colloid shape is hidden in the rate constants; shape does not affect the form of the 

differential equation for dc/dt. 

d) 
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2

Frequency  (BM eq. 9.24)  ;  4  (BM eq. 9.26).  Since  we put  and

4
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Note that we do not need to know the concentration profile ( )jc r  (that follows from 

Fick’s second diffusion law) to obtain this stationary flux. 
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Since Re <<1, the blood flow is purely viscous Stokes flow. 

c) The velocity gradient in the tube is 

zr

zr

1
  zero   (BM eq. 8.12)

2

Substitution in Newton's viscosity law

                  (BM eq. 8.13)

yields

1
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So the viscous stress increases linearly from 

0 at 0  to its value ( ) at the (no-slip boundary) wall.r r R = = = =  
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d) Stress at the wall: ( )    [N m ]

2

1 1 1
Integrate along : [N m ]

2 2 2

Multiplication by the circumference 2  gives the total viscous force:
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The flow is driven by a net pressure force 
2P R , exerted on the inlet and outlet 

tube cross-sectional area 
2R . In the stationary state of constant flow speeds, this 

external force must be balanced by the total viscous force (equal in magnitude but 

opposite in direction). 

e) Comparing Darcy’s law /u k P L =  with 

2

8

R P
u

L


  = it follows that 

2
21

 ( m)
8 8

R
k = =  

f) Under pure-slip conditions there are no viscous forces so fluid moves everywhere 

at the same speed; a speed that cannot reach a steady, stationary state – which 

requires that viscous forces balance the driving pressure force. For parallel walls the 

geometry is not relevant; a fluid cannot distinguish one perfect-slip wall from 

another. (More complex geometries might offer resistance to fluid flow in the form 

of pressure forces – as occurs in the flow along a pure-slip sphere surface; no points 

will be distracted, however, if a student does not mention this option as in the 

course we only studied parallel geometries..) 

 


