

Colloid Science Exam Part II June 30, 2021 Maximum total points: 120

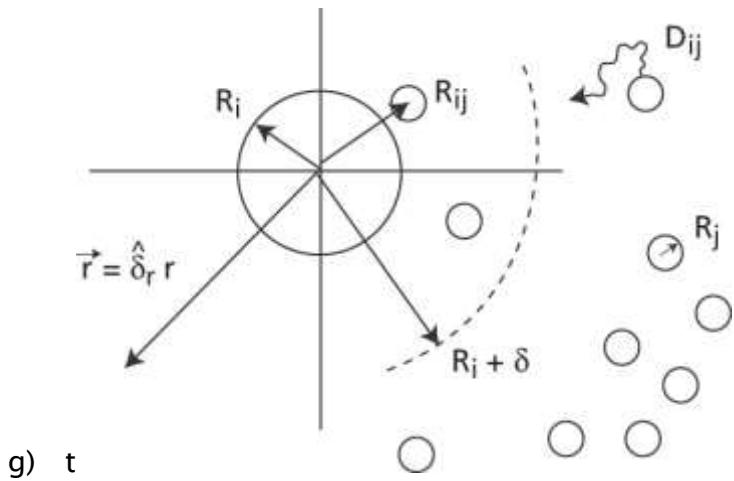
1. During the initial stage of fast flocculation, the number density c of monomeric colloids decreases with time t as

$$dc/dt = -k_{11}c^2 ; k_{11} = \text{rate constant of monodisperse colloids}$$

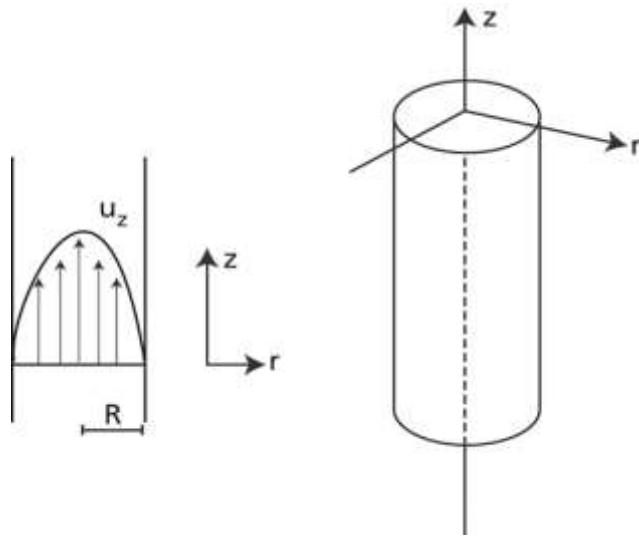
- a) Explain why the initial flocculation kinetics is of second order in concentration. [4]
- b) If we decrease the size of the colloids, how does that modify the flocculation kinetics? [7]
- c) Defend or criticize the following statement: "the above given differential equation strictly speaking only holds for colloids that are spherical". [7]
- d) Colloidal spheres with radius $R_1 = 500 \text{ nm}$ and volume fraction $\phi_1 = 0.01$ are mixed in a dispersion with small nano-particles with radius $R_2 = 10 \text{ nm}$ and volume fraction $\phi_2 = 0.05$. Calculate the Brownian encounter frequency between small spheres and big spheres. [13]
- e) Write down Fick's first diffusion law for the total diffusion flux $J(j \rightarrow i)$ of j -particles, through a shell area $4\pi r^2$, in the direction of particle i at the origin (see BM Figure 9.2). Show how integration of this law leads to the stationary diffusion flux $J(j \rightarrow i) = 4\pi D_{ij}R_{ij}c_{j,\infty}$. Specify boundary conditions – and meaning of symbols. [14]
- f) BM Equation (9.34) is the time dependence¹ of the (number) concentration c_α of flocs containing α monomers (singlet colloids). Show how (9.33) leads to equation (9.36) for the *total* number density, c_{tot} of monomers and flocs. Demonstrate that the half-life of that total number is

$$t_{1/2} = 2/k_{11}c_0. [15]$$

¹ Assuming all rate constants k_{ij} equal k_{11}



BM Figure 9.2. Spheres j diffuse from a bulk (with number concentration $c_{j,\infty}$) at a distance $R_i + \delta$ towards a diffusing tracer sphere with radius R_i which acts as an infinite sink from which no j -sphere can escape.



BM Figure 8.2. Axial flow in a straight tube; the velocity profile is given by BM eq. (8.15); the radial coordinate runs from $r = 0$ in the center to the tube radius $r = R$. The flow is driven by a pressure gradient $dp/dz = \Delta P/L$, where ΔP is the total pressure drop over a tube length L .

2. The flow of blood through veins of a human being is an example of the flow of a viscous colloidal dispersion in a tube. Assume an axial flow in a straight tube with radius R and length L (BM Figure 8.2) in the z direction as a model for the vein. The dispersion's Newtonian viscosity² equals $\eta = 1 \text{ mPa sec}$.

- Calculate the average blood speed $\langle u \rangle$ in a tube with radius $R = 1 \mu\text{m}$ and a blood pressure gradient of 0.3 bar m^{-1} . [8]
- Evaluate the Reynolds number for the flow in a), for a blood mass density $\delta = 1 \text{ g mL}^{-1}$. Conclusion? [8]
- Show how the viscous stress σ_{zx} depends on radial position r in the vein, and sketch the stress profile; assuming no-slip boundary conditions, i.e. $u(r = R) = 0$. [12]
- Derive the total viscous force, F_{vis} , on the inner wall of the tube. Explain why your result for F_{vis} must be correct. [14]
- Calculate the magnitude of the liquid permeability k (defined by Darcy's law $\langle u \rangle = k \Delta P / \eta L$) of the tube with radius $R = 1 \mu\text{m}$. [9]
- What is a pure-slip boundary condition, and what can you say about flow in a tube when a pure-slip condition would be present? Do you expect the geometry of the flow channel still to be relevant under pure-slip conditions? [9]

² Blood is actually a non-Newtonian fluid, but its shear-thinning viscosity is close to that of water.

Answers CS Exam Part II June 30, 2021.

1 a) Kinetics is proportional to concentration squared as initially there only encounters between two monomers ; in a later stage also aggregation of dimers, trimers etc occurs.

b) It depends: if the colloid size decreases for a given number density, the kinetics will hardly change because $k \propto D \times \text{size}$ and $D \propto 1/\text{size}$ so k is size independent. However, if we fix the colloid volume fraction (or weight concentration), than a size decrease enhances the colloid number density so the kinetics will speed up.

c) Colloid shape is hidden in the rate constants; shape does not affect the form of the differential equation for dc/dt .

d)

Frequency $f = k_{12}c_1c_2$ (BM eq. 9.24) ; $k_{12} = 4\pi D_{12}R_{12}$ (BM eq. 9.26). Since $R_1 \gg R_2$ we put $D_{12} \approx D_2$ and $R_{12} \approx R_1$: $\Rightarrow k_{12} \approx \frac{4\pi kT}{6\pi\eta R_2} R_1 = 1.54 \times 10^{-16} \text{ m}^3 \text{s}^{-1}$, taking $\frac{kT}{\eta} = 4.63 \times 10^{-18} \text{ m}^3 \text{s}^{-1}$ for water at 25°C .

Volume fraction $\phi_1 = c_1(4\pi/3)R_1^3 \Rightarrow c_1 = 1.91 \times 10^{16} \text{ m}^{-3}$; $c_2 = 1.19 \times 10^{22} \text{ m}^{-3} \Rightarrow f = 3.5 \times 10^{22} \text{ m}^{-3} \text{s}^{-1}$

$$\text{e) } J(j \rightarrow i) = 4\pi r^2 D_{ij} \frac{dc_j}{dr} ; J(j \rightarrow i) \text{ independent of } r \text{ (stationary state)}$$

$$\Rightarrow J(j \rightarrow i) \int_{\infty}^{R_{ij}} \frac{dr}{r^2} = 4\pi D_{ij} \int_{c_{j,\infty}}^0 dc_j$$

$$\Rightarrow J(j \rightarrow i) = 4\pi D_{ij} R_{ij} c_{j,\infty} \text{ (sec}^{-1}\text{)}$$

Note that we do not need to know the concentration profile $c_j(r)$ (that follows from Fick's second diffusion law) to obtain this stationary flux.

$$\begin{aligned}
\text{f) } \frac{dc_{\alpha}}{dt} &\approx \frac{1}{2} k_{11} \sum_{i=1}^{\alpha-1} c_i c_j - c_{\alpha} k_{11} \sum_{i=1}^{\infty} c_i ; \quad c_{\text{tot}} = \sum_{\alpha=1}^{\infty} c_{\alpha} \\
\Rightarrow \frac{dc_{\text{tot}}}{dt} &= \frac{1}{2} k_{11} \sum_{\alpha=1}^{\infty} \sum_{i=1}^{\alpha-1} c_i c_j - k_{11} \sum_{\alpha=1}^{\infty} c_{\alpha} \sum_{i=1}^{\infty} c_i = \frac{1}{2} k_{11} \sum_{\alpha=1}^{\infty} \sum_{i=1}^{\alpha-1} c_i c_j - k_{11} c_{\text{tot}}^2
\end{aligned}$$

Writing out the double summation for $\alpha=1, 2, 3 \dots$

$$\text{it turns out to equal: } \frac{1}{2} c_1 c_{\text{tot}} + \frac{1}{2} c_2 c_{\text{tot}} + \frac{1}{2} c_3 c_{\text{tot}} + \dots = \frac{1}{2} c_{\text{tot}} \sum_{j=1}^{\infty} c_j = \frac{1}{2} c_{\text{tot}}^2$$

$$\Rightarrow \frac{dc_{\text{tot}}}{dt} = \frac{1}{2} k_{11} c_{\text{tot}}^2 - k_{11} c_{\text{tot}}^2 = -\frac{1}{2} k_{11} c_{\text{tot}}^2 \Rightarrow c(t) = \frac{c_0}{1 + c_0 (k/2)t} \Rightarrow t_{1/2} = \frac{2}{k_{11} c_0}$$

$$2) a) <u> = \frac{R^2}{8\eta} \frac{\Delta P}{L} = \frac{(1 \times 10^{-6} \text{ m})^2 \times (0.3 \text{ bar m}^{-1})}{8 \times 10^{-3} \text{ Pa sec}} = 3.8 \mu\text{m s}^{-1}$$

$$b) \text{Re} = \delta \frac{<u> R}{\eta} = \frac{(10^3 \text{ kg m}^{-3}) \times (3.8 \text{ m s}^{-1}) \times (10^{-6} \text{ m})}{10^{-3} \text{ Pa s}} = 3.8 \times 10^{-6} \frac{\text{kg m}}{\text{N s}^2} = 3.8 \times 10^{-6}$$

Since $\text{Re} \ll 1$, the blood flow is purely viscous Stokes flow.

c) The velocity gradient in the tube is

$$\frac{du_z}{dr} = \frac{1}{2\eta} \frac{dp}{dz} r + \text{zero} \quad (\text{BM eq. 8.12})$$

Substitution in Newton's viscosity law

$$\sigma_{zx} = -\eta \frac{du_z}{dr} \quad (\text{BM eq. 8.13})$$

yields

$$\sigma_{zx} = -\frac{1}{2} \frac{dp}{dz} r \quad (= \text{positive constant} \times r)$$

So the viscous stress increases linearly from

$\sigma = 0$ at $r = 0$ to its value $\sigma = (r = R)$ at the (no-slip boundary) wall.

d) Stress at the wall: $\sigma(r = R) = -\frac{1}{2} R \frac{dp}{dz}$ [N m⁻²]

Integrate along z : $-\frac{1}{2} R \int_0^L \frac{dp}{dz} dz = -\frac{1}{2} R \int_{P+\Delta P}^P dp = \frac{1}{2} R \Delta P$ [N m⁻¹]

Multiplication by the circumference $2\pi R$ gives the total viscous force:

$$F_{\text{vis}} = \frac{1}{2} R \Delta P \times 2\pi R = \Delta P \pi R^2$$

The flow is driven by a net pressure force $\Delta P \pi R^2$, exerted on the inlet and outlet tube cross-sectional area πR^2 . In the stationary state of constant flow speeds, this external force must be balanced by the total viscous force (equal in magnitude but opposite in direction).

e) Comparing Darcy's law $\langle u \rangle = k \Delta P / \eta L$ with $\langle u \rangle = \frac{R^2}{8\eta} \frac{\Delta P}{L}$ it follows that

$$k = \frac{R^2}{8} = \frac{1}{8} (\mu\text{m})^2$$

f) Under pure-slip conditions there are no viscous forces so fluid moves everywhere at the same speed; a speed that cannot reach a steady, stationary state – which requires that viscous forces balance the driving pressure force. For parallel walls the geometry is not relevant; a fluid cannot distinguish one perfect-slip wall from another. (More complex geometries might offer resistance to fluid flow in the form of pressure forces – as occurs in the flow along a pure-slip sphere surface; no points will be distracted, however, if a student does not mention this option as in the course we only studied parallel geometries..)