Colloid Science Exam Part Il June 30, 2021 Maximum total points: 120

1. During the initial stage of fast flocculation, the number density ¢ of monomeric

colloids decreases with time t as

dc/dt=- k, c® ; k, = rate constant of monodisperse colloids

a) Explain why the initial flocculation kinetics is of second order in
concentration.[4]

b) If we decrease the size of the colloids, how does that modify the flocculation
kinetics? [7]

c¢) Defend or criticize the following statement: “the above given differential
equation strictly speaking only holds for colloids that are spherical”. [7]

d) Colloidal spheres with radius R =500nnmand volume fraction ¢ =0.01 are
mixed in a dispersion with small nano-particles with radius R, =10 nmand
volume fraction ¢,=0.05. Calculate the Brownian encounter frequency

between small spheres and big spheres. [13]

e) Write down Fick’s first diffusion law for the total diffusion flux J(j—i) of j-

particles, through a shell area 47zr?, in the direction of particle j at the origin
(see BM Figure 9.2). Show how integration of this law leads to the stationary

diffusion flux  J(j—>i)=4zD;R,c,,. Specify boundary conditions - and

ij 0"
meaning of symbols. [14]
f) BM Equation (9.34) is the time dependence' of the (number) concentration

c, of flocs containing @ monomers (singlet colloids). Show how (9.33)
leads to equation (9.36) for the total number density, c,, of monomers

and flocs. Demonstrate that the half-life of that total number is
t,, =2/k,c,. [15]

! Assuming all rate constants kij equal k,,
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BM Figure 9.2. Spheres j diffuse from a bulk (with number concentration ¢;-)at a distance R, + & towards

a diffusing tracer sphere with radius R, which acts as an infinite sink from which no j-sphere can escape.

-

BM Figure 8.2. Axial flow in a straight tube; the velocity profile is given by BM eq. (8.15); the radial co-
ordinate runs from =0 in the center to the tube radius I = R. The flow is driven by a pressure

gradient dp/dz =AP /L, where AP is the total pressure drop over a tube length L.



2. The flow of blood through veins of a human being is an example of the flow of
a viscous colloidal dispersion in a tube. Assume an axial flow in a straight tube
with radius R and length L (BM Figure 8.2) in the z direction as a model for the

vein. The dispersion’s Newtonian viscosity? equals n = 1 mPa sec.

a) Calculate the average blood speed <u> in a tube with radius R=1m and a

blood pressure gradient of 0.3 bar m™.[8]

b) Evaluate the Reynolds number for the flow in a), for a blood mass density
5=1gmL". Conclusion? [8]

c) Show how the viscous stress o, depends on radial position r in the vein,
and sketch the stress profile; assuming no-slip boundary conditions, i.e. u(r =
R) =0.[12]

d) Derive the total viscous force ,F,, on the inner wall of the tube. Explain why

your result for F,, must be correct. [14]

e) Calculate the magnitude of the liquid permeability k (defined by Darcy’s law
<u>=KkAP/nL) of the tube with radius R =1um.[9]

f) What is a pure-slip boundary condition, and what can you say about flow in

a tube when a pure-slip condition would be present ? Do you expect the

geometry of the flow channel still to be relevant under pure-slip conditions? [9]

2 Blood is actually a non-Newtonian fluid, but its shear-thinning viscosity is close to that of water.



Answers CS Exam Part Il June 30, 2021.

1 a) Kinetics is proportional to concentration squared as initially there only encounters

between two monomers ; in a later stage also aggregation of dimers, trimers etc

OCcCurs.

b) It depends: if the colloid size decreases for a given number density, the kinetics
will hardly change because ko Dxsize and Dol/size so k is size independent.
However, if we fix the colloid volume fraction (or weight concentration), than a size

decrease enhances the colloid number density so the kinetics will speed up.

¢) Colloid shape is hidden in the rate constants; shape does not affect the form of the
differential equation for dc/dt.

d)

Frequency f =k,c.c, (BMeq. 9.24) ; k, =47xD,,R,, (BM eq. 9.26). Since R, > R, we put D,, = D, and
R,*R: =k, ~ ;”k; R, =1.54x10"°m%™, taking KT _ 4.63x10m’s* for water at 25 °C.

TR, n

Volume fraction ¢ =c, (47 /3)R* = ¢, =1.91x10"m; ¢, =1.19x10”?m~® = f =3.5x10%m™"

dc;
e) J(j—i)=4xnr’D; d_rj ; J(J — 1) independent of r (stationary state)

" dr ¢
:>J(j—>i)IF: 47Dy [ de,

c

jo

=J(i>i)= 47DR;c;.. (sec™)

Note that we do not need to know the concentration profile c,(r) (that follows from

Fick’s second diffusion law) to obtain this stationary flux.



dt i=1 i=1 a=1
dC 1 © a-1 © 0 1 0 a-1
- __kllz GiC; _kllzcazcl :_kllz GiC; kllcztot
dt 2 a=1 i=1 a=1 i=1 2 a=1l i=1

Writing out the double summation for =1, 2, 3 .......

. 1 1 1 1 1
it turns out to equal : 5 Gl ¥ 5 Oyl +2 i + o= Ecm;cj = Eczm

de,, 1, ) 1. C 2
= —9% = Zk.c: -k =-=k,c =ct)=——3—— =t,=
dt 2 11~tot 11~tot 2 11~tot ( ) 1+C0 (k/Z)t 1/2 knCo
2 -6 2 -1
2a)<u>=R—£=(1X1O m) E(O.Bbarm ):3.8,ums’l
8y L 8x107 Pasec
b) Ro— 52U> R_ (10° kgm~2)x(3.810° ms™*)x(10°m) _38x10° kgm _
n 107 Pas N s’

Since Re <<1, the blood flow is purely viscous Stokes flow.
¢) The velocity gradient in the tube is

W _ 19, ser0 (BMeq 8.12)
dr 27 dz

Substitution in Newton's viscosity law

— (BM eg. 8.13)
dr
yields
o, = _ld—pr (= positive constant x r)
2 dz

So the viscous stress increases linearly from
o=0atr=0 toitsvalue o =(r =R) at the (no-slip boundary) wall.

3.8x10°
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d) Stress at the wall: o(r =R) =
2 dz

[Nm™]

1_¢dp 1. ¢ 1 )
Integrate alongz:—=R|—dz= —=R | dp ==RAP [Nm™
g gz:-> ldz [ dp =2RAP [Nm]

P+AP
Multiplication by the circumference 2zR gives the total viscous force:

Fs = % R AP x 27R = AP7R?

The flow is driven by a net pressure force APzR?, exerted on the inlet and outlet

tube cross-sectional area 7R”. In the stationary state of constant flow speeds, this
external force must be balanced by the total viscous force (equal in magnitude but
opposite in direction).

2

e) Comparing Darcy’s law <u>=kAP/nL with <u > :8R—A—LP it follows that
Ul

=L Gy

8 8
f) Under pure-slip conditions there are no viscous forces so fluid moves everywhere
at the same speed; a speed that cannot reach a steady, stationary state - which
requires that viscous forces balance the driving pressure force. For parallel walls the
geometry is not relevant; a fluid cannot distinguish one perfect-slip wall from
another. (More complex geometries might offer resistance to fluid flow in the form
of pressure forces - as occurs in the flow along a pure-slip sphere surface; no points
will be distracted, however, if a student does not mention this option as in the

course we only studied parallel geometries..)



